Automatic generation of temporal planning domains for e-learning problems
نویسندگان
چکیده
AI Planning & Scheduling techniques are being widely used to adapt learning paths to the special features and needs of students both in distance learning and lifelong learning environments. However, instructors strongly rely on Planning & Scheduling experts to encode and review the domains for the planner/scheduler to work. This paper presents an approach to automatically extract a fully operational HTN planning domain and problem from a learning objects repository without requiring the intervention of any planning expert, and thus enabling an easier adoption of this technology in practice. The results of a real experiment with a small group of students within an e-Learning private company in Spain are also shown.
منابع مشابه
Using linear programming to solve clustered oversubscription planning problems for designing e-courses
The automatic generation of individualized plans in specific domains is an open problem that combines aspects related to automated planning, machine learning or recommendation systems technology. In this paper, we focus on a specific instance of that task; that of generating e-learning courses adapted to students’ profiles, within the automated planning paradigm. One of the open problems in thi...
متن کاملA review of machine learning for automated planning
Recent discoveries in automated planning are broadening the scope of planners, from toy problems to real applications. However, applying automated planners to real-world problems is far from simple. On the one hand, the definition of accurate action models for planning is still a bottleneck. On the other hand, off-the-shelf planners fail to scale up and to provide good solutions in many domains...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملPolicy-Gradient Methods for Planning
Probabilistic temporal planning attempts to find good policies for acting in domains with concurrent durative tasks, multiple uncertain outcomes, and limited resources. These domains are typically modelled as Markov decision problems and solved using dynamic programming methods. This paper demonstrates the application of reinforcement learning — in the form of a policy-gradient method — to thes...
متن کاملMachine Learning in Hybrid Hierarchical and Partial-Order Planners for Manufacturing Domains
The application of AI planning techniques to manufacturing systems is being widely deployed for all the tasks involved in the process, from product design to production planning and control. One of these problems is the automatic generation of control sequences for the entire manufacturing system in such a way that final plans can be directly used as the sequential control programs which drive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Scheduling
دوره 13 شماره
صفحات -
تاریخ انتشار 2010